0.1 分類空間

Topological category からはその分類空間を構成できる。これは、topological monoid や small category の分類空間の一般化になっている。いずれにしても、simplicial space、simplicial set の category を経由して、その幾何学的実現を取るというもので、small category の場合には CW complex として実現される。

Definition 0.1.1

 X_* が simplicial space とは、空間列 $\{X_n\}_{n\geq 0}$ と、その間の連続写像、 $d^j:X_n\longrightarrow X_{n-1}$, $s^i:X_n\longrightarrow X_{n+1}$ $(0\leq i,j\leq n)$ が与えられ、ある条件を満たすものである。特に、空間が discrete のとき、simplicial set と呼ぶ。

 Δ^n を n 次単体とし、

$$d_i: \Delta^{n-1} \longrightarrow \Delta^n, \ s_i: \Delta^{n+1} \longrightarrow \Delta^n \ (0 \le i, j \le n)$$

をそれぞれ、j-th face への inclusion と、i-th face への押しつぶしとする。このとき、

$$|X_*| = \coprod \Delta^n \times X_n / \sim$$

と定義する。ただし、 $t \in \Delta^{n-1}, x \in X_n$ に対し、 $(d_j(t), x) \sim (t, d^j(x))$ 。また、 $s \in \Delta^{n+1}, y \in X_n$ に対し、 $(s_i(t), y) \sim (t, s^i(y))$ 。これを X_* の幾何学的実現とよぶ。

$$|-|$$
: Simplicial space \longrightarrow Space

は functor となる。

Definition 0.1.2

D を topological category とする。このとき、simplicial space、 $N_*(D)$ を次のように定義する。

$$N_p(D) = \{ (f_1, \dots, f_p) \in \text{Mor}(D)^p \mid t(f_{i-1}) = s(f_i) \ 1 \le i \le p \}$$

そして、 $d^j: N_p(D) \longrightarrow N_{p-1}(D)$, $s^i: N_p(D) \longrightarrow N_{p+1}(D)$ は、

$$d^{j}(f_{1},\cdots,f_{p})=(f_{1},\cdots,f_{j}\circ f_{j+1},\cdots,f_{p}),\ s^{i}(f_{1},\cdots,f_{p})=(f_{1},\cdots,f_{i},1,f_{i+1},\cdots,f_{p})\ (0\leq i,j\leq p)$$

で定義する。ただし、 $N_0X=\mathrm{ob}(D)$, $N_1X=\mathrm{Mor}(D)$ で $d^0=t$, $d^1=s:N_1X\longrightarrow N_0X$ であり、 $s^1=i:N_0X\longrightarrow N_1X$ である。 N_*D を D の nerve とよび、この幾何学的実現 $|N_*D|$ を D の分類空間と呼び、BD などと書く。

Example 0.1.3

object が 1 つで morphism が恒等射のみの category である $D=\{\phi\}$ を考える。このとき、任意の p に対し、 $N_p(D)=*$ であり、 $BD=\coprod_{n\geq 0}\Delta^n\times*/\sim$ であるが、ここで、同値関係を考えると、任意の $t\in\Delta^n$ に対し、 $(t,*=s^i(*))\sim(s_i(t),*)\sim\cdots\sim(*,*)$ なので、 $|N_*(D)|$ は一点空間である。

Example 0.1.4

 $D = \{x \xrightarrow{f} y \xrightarrow{g} z\}$ を考える。Example 0.1.3 より、恒等射は省略して考えてよい。

$$N_0X = \{x, y, z\}$$
, $N_1X = \{f, q, fq\}$, $N_2X = \{(f, q)\}$

であり、

$$BD = \Delta^0 \times \{x,y,z\} \coprod \Delta^1 \times \{f,g,fg\} \coprod \Delta^2 \times \{(f,g)\} = \Delta^2$$

同様に、 $D = \{a_1 \longrightarrow \cdots \longrightarrow a_n\}$ のとき、 $BD = \Delta^n$

Example 0.1.5

M: topological monoid は ob(M) = *、Mor(M) = M という topological category と考えられる。このとき、 $N_k M = M^k$ である。

Proposition 0.1.6

 $B(C \times D) \cong BC \times BD$ である。

 $|-|: Sspace \longrightarrow Space と、 N_*: top-cat \longrightarrow SSpace がそれぞれ product を保つことを示せばよい。$

Proposition 0.1.7

 $F,G:C\longrightarrow D:$ continuos functor に対し、 $\alpha:F\longrightarrow G$ を continuos natural transformation とする。このとき、 $BF\simeq BG:BC\longrightarrow BD$ となる。

proof) $I = \{0 \longrightarrow 1\}$ という、small category と考える。 $\alpha: F \longrightarrow G$ より、

$$A: C \times I \longrightarrow D$$

を、object 対応は、A(c,0)=F(c) , A(c,1)=G(c) で定義し、morphism 対応は、

$$\operatorname{Hom}_{C\times I}((x,i),(y,j)) = \operatorname{Hom}_{C}(x,y) \times \operatorname{Hom}_{I}(i,j) \longrightarrow \operatorname{Hom}_{D}(A(x,i),A(y,j))$$

を考えればよいのだが、i=j=0 のときは、 $\operatorname{Hom}(i,j)=*$ なので、

$$F: \operatorname{Hom}_{C\times I}((x,0),(y,0)) = \operatorname{Hom}_{C}(x,y) \longrightarrow \operatorname{Hom}_{D}(A(x,0),A(y,0)) = \operatorname{Hom}(Fx,Fy)$$

とすればよい。同様に、i=j=1 の場合は、G で移せばよい。i=1,j=0 の場合は $\operatorname{Hom}_I(1,0)=\phi$ なので、考えなくて良い。残るは、i=0,j=1 の場合、 $\operatorname{Hom}_I(0,1)=*$ である。

$$\operatorname{Hom}_{C\times I}((x,0),(y,1)) = \operatorname{Hom}_{C}(x,y) \longrightarrow \operatorname{Hom}_{D}(A(x,0),A(y,1)) = \operatorname{Hom}(Fx,Gy)$$

は、 $f\in \mathrm{Hom}_C(x,y)$ に対し、 $\alpha_y\circ F(f)=G(f)\circ \alpha_x\in \mathrm{Hom}(Fx,Gy)$ を対応させればよい。これより、

$$BA: B(C \times I) \cong BC \times I \longrightarrow D$$

となり、

$$\begin{array}{c|c}
C & \xrightarrow{F} & D \\
\downarrow i_0 & & \downarrow = \\
C \times I & \xrightarrow{A} & D
\end{array}$$

は可換で、Bを施して、

$$BC \xrightarrow{=} BC \xrightarrow{BF} BD$$

$$\downarrow i_0 \qquad \qquad \downarrow a_0 \qquad \qquad \downarrow$$

が可換となるため、BAがBFとBGを繋ぐhomotopyとなる。

Corollary 0.1.8

 $F: C \Longleftrightarrow D: G$ ならば、 $BC \simeq BD$ で、BF, BG が互いに homotopy inverce である。

proof) Adjoint の定義から、 $GF \longrightarrow 1_C$ 、そして、 $FG \longrightarrow 1_D$ という natural transformation が存在するので、Prop 0.1.7 により示される。

Corollary 0.1.9

 $F: C \longrightarrow D$ が equivalence of category ならば、BF は homotopy equivalence である。

Proposition 0.1.10

C が initial object、あるいは terminal object を持つならば、BC は contractible である。

proof) incial object $\phi \in C$ を持てば、natural transformation

$$\alpha: c_{\phi} \longrightarrow 1_C: C \longrightarrow C$$

を持つ。これより、 $Bc_{\phi} \simeq B1_C: BC \longrightarrow BC$ を導くが、これは、 $c_{\phi} \simeq 1_{BC}$ ということであり、これより BC は ϕ に contrabtible である。terminal object を持つ場合でも同様に示せる。